Centre for Theoretical Physics Nijenborgh 4 9747 AG Groningen

TENTAMEN GENERAL RELATIVITY

tuesday, 26-06-2007, room 5118.-149, 9.00-12.00

Indicate at the first page clearly your name, address, date of birth, year of arrival and at every other page your name.

Question 1

The Riemann tensor in N spacetime dimensions has components R^{d}_{abc} . We define $R_{abcd} = g_{ae}R^{e}_{bcd}$. The Riemann tensor satisfies the identities

$$R_{abcd} = -R_{bacd} = -R_{abdc}, (1)$$

$$R_{abcd} + R_{adbc} + R_{acdb} = 0. (2)$$

(1.1) Show, by using equations (1) and (2), that

$$R_{abcd} = R_{cdab} \,. \tag{3}$$

From now on we assume that the number of spacetime dimensions N is equal to 3.

(1.2) Show that for N=3 the Riemann tensor can be expressed in terms of the Ricci tensor as follows:

$$R^{ab}{}_{cd} = -\frac{1}{q} \epsilon^{abe} \epsilon_{cdf} (R^f{}_e - \frac{1}{2} \delta^f{}_e R) , \qquad (4)$$

where

$$R^{ab}{}_{cd} = g^{be}R^{a}{}_{ecd}, \qquad (5)$$

$$g = \det(g_{ab}), \qquad (6)$$

$$g = \det(g_{ab}), \tag{6}$$

and ϵ^{abc} is the completely anti-symmetric Levi-Civita symbol in 3 dimensions ($\epsilon^{012}=1$).

Hint: Use the identities (without proof)

$$\epsilon^{acd}\epsilon_{bef}R^{ef}_{cd} = -4g(R^a_b - \frac{1}{2}\delta^a_b R), \qquad (7)$$

$$\epsilon^{abe}\epsilon_{cde} = g(\delta^a{}_c\delta^b{}_d - \delta^b{}_c\delta^a{}_d). \tag{8}$$

- (1.3) Show that the result of question (1.2) implies that every solution of the Einstein equation with $T_{ab} = 0$ describes a flat space.
- (1.4) Take $T_{ab} = \Lambda g_{ab}$, with Λ is constant. Show that every solution of the Einstein equation corresponds to a maximally symmetric space.

Question 2

The Maxwell equations in a four-dimensional curved space can be written in the form

$$\nabla_{\nu}F^{\mu\nu} = j^{\mu}, \qquad (9)$$

$$\nabla_{\lambda} F_{\mu\nu} + \nabla_{\nu} F_{\lambda\mu} + \nabla_{\mu} F_{\nu\lambda} = 0. \tag{10}$$

Here F is the anti-symmetric field-strenght tensor and j the current. The covariant derivatives are with respect to the metric connection.

(2.1) Show that equation (10) for $F_{\mu\nu}$ is equivalent to

$$\partial_{\lambda}F_{\mu\nu} + \partial_{\nu}F_{\lambda\mu} + \partial_{\mu}F_{\nu\lambda} = 0. \tag{11}$$

Hint: The covariant derivative of a contravariant vector V^{μ} and a covariant vector W_{μ} are given by

$$\nabla_{\nu}V^{\mu} = \partial_{\nu}V^{\mu} + \Gamma^{\mu}_{\lambda\nu}V^{\lambda},$$

$$\nabla_{\nu}W_{\mu} = \partial_{\nu}W_{\mu} - \Gamma^{\lambda}_{\mu\nu}W_{\lambda}.$$
(12)

(2.2) We write

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} \,, \tag{13}$$

where A_{μ} is a covariant vector. Show that the $F_{\mu\nu}$ defined in this way is a covariant tensor by showing that

$$\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} = \nabla_{\mu}A_{\nu} - \nabla_{\nu}A_{\mu}. \tag{14}$$

Show that this $F_{\mu\nu}$ is a solution of equation (10).

(2.3) Show that equation (9) may alternatively be written as

$$\partial_{\nu}(\sqrt{-g}F^{\mu\nu}) = \sqrt{-g}j^{\mu}\,,\tag{15}$$

with $g = \det (g_{\mu\nu})$. Hint: the metric connection is given by

$$\Gamma^{\rho}_{\mu\nu} = \frac{1}{2} g^{\rho\sigma} \{ \partial_{\mu} g_{\nu\sigma} + \partial_{\nu} g_{\mu\sigma} - \partial_{\sigma} g_{\mu\nu} \} \,. \tag{16}$$

Furthermore, we have the identity

$$\partial_{\mu}g = gg^{\rho\sigma}\partial_{\mu}g_{\rho\sigma}. \tag{17}$$

(2.4) Show that equation (9) implies that

$$\nabla_{\mu} j^{\mu} = 0. \tag{18}$$

Question 3

Two observers, A and B, find themselves in free fall in orbits of constant r in the Schwarzschild metric (we take c = 1)

$$ds^{2} = \left(1 - \frac{2m}{r}\right)dt^{2} - \left(1 - \frac{2m}{r}\right)^{-1}dr^{2} - r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}). \tag{19}$$

The orbits are in the plane $\theta = \pi/2$ and have a radius $r_A = 4m$, $r_B = 4^{4/3}m$. At the time t = 0 the observers A and B both go through the point with $\phi = 0$.

For circular, timelike geodesics with radius r we have

$$(\dot{t})^2 = \frac{r}{r - 3m} = (\dot{\phi})^2 r^3 / m,$$
 (20)

where the dot indicates differentiation with respect to the proper time.

- (3.1) Calculate the coordinate time Δt_A that observer A needs for one revolution.
- (3.2) How much time $\Delta \tau_A$ does observer A need for one revolution according to his own watch?
- (3.3) The clock of observer B is lighted and can be read from a distance by observer A. What time difference $(\Delta \tau_B)'$ does A see at the watch of B between two successive passages of B through the point with $\phi = 0$? How much time $(\Delta \tau_A)'$ has evolved in the meantime according to his own watch?
- (3.4) Observer A now uses his rocket motors to stop at the point with coordinates $r=4m, \theta=\pi/2, \phi=0$. He repeats the observations of question (2.3). What are now the results of these observations, i.e. what are now the values of $(\Delta \tau_B)'$ and $(\Delta \tau_A)'$?